很多以前學習過的知識在不經(jīng)常被應用的情況下,統(tǒng)統(tǒng)被遺忘掉了,在寫到論文的時候往往會被忘掉的知識困住,其實并不是不會,而是當初學的時候不認真,或者是忘記了。這篇文章,其實是筆記整理。
1、excel表格的數(shù)據(jù)與導入Eviews的數(shù)據(jù)單位是否需要統(tǒng)一?如果excel表格的單位為%,直接導入到Eviews軟件,那么回歸分析結果所得到的數(shù)據(jù)總和就會很大。為化解這一尷尬情況,可以把導入到Eviews的數(shù)據(jù)化成小數(shù)形式。所以,是否要統(tǒng)一要看具體情況。
這一點僅為個人見解,怕被誤導可以忽略。
2、縮小置信區(qū)間的***增大樣本容量n。
樣本容量變大,樣本參數(shù)估計量的標準差減少;同時,在同樣的顯著性水平下,n越大,t分布表中的臨界值越小。
提高模型的擬合優(yōu)化。
因為樣本參數(shù)估計量的標準差與殘差平方和成正比,模型的擬合優(yōu)化度越高,殘差平方和越小。
提高樣本觀測值的分散性
3、擬合優(yōu)度檢驗增加解釋變量會提高擬合優(yōu)度?
R2越接近于1,模型的擬合優(yōu)度越高。
在應用過程中發(fā)現(xiàn),如果在模型中增加一個解釋變量,R2往往增大。這是因為殘差平方和往往隨著解釋變量個數(shù)的增加而減少,至少不會增加。
這就給人一個錯覺:要使模型擬合得好,只要增加解釋變量即可。但是,現(xiàn)實情況往往是,由增加解釋變量個數(shù)引起的R2的增大與擬合好壞無關,因此在多元回歸模型之間比較擬合優(yōu)度,R2就不是一個合適的指標,必須加以調整。即調整的可決系數(shù)。
4、F檢驗5、T檢驗6、對模型的擬合優(yōu)度檢驗和回歸方程線性的顯著性檢驗的糾結,兩者都要達到最優(yōu)區(qū)間嗎?擬合優(yōu)度檢驗和方程總體線性的顯著性檢驗是從不同原理出發(fā)的兩類檢驗,前者是從已經(jīng)得到估計的模型出發(fā),檢驗它對樣本觀測值的擬合程度,后者是從樣本觀測值出發(fā)檢驗模型總體線性關系的顯著性。但是二者又是關聯(lián)的,模型對樣本觀測值的擬合程度高,模型總體線性關系的顯著性就強。
我的疑問:在已知線性回歸結果的情況下,可決系數(shù)R2和調整的可決系數(shù)的值達到多大才算是一個合格的模型,如果不達到該區(qū)間,那這個模型是否可用?
擬合優(yōu)化檢驗到底哪一個更重要,誰可以決定模型的可行性?
答案:
調整的可決系數(shù)達到多大才算模型通過檢驗?沒有絕對的標準,要看具體情況而定。模型的擬合優(yōu)度并不是判斷模型質量的唯一標準,有時甚至為了追求模型的經(jīng)濟意義,可以犧牲一點擬合優(yōu)度。
F和R2是同向變化的,當R2=0時,F(xiàn)=1;R2越大,F(xiàn)值也越大;當R2=1時,F(xiàn)為無窮大。因此,F(xiàn)檢驗是所估計回歸的總顯著性的一個度量,也是R2的一個顯著性檢驗。
7、模型通過F檢驗,但是只有1個自變量通過了T檢驗,該模型可用嗎?判斷結果,該回歸為為回歸。模型建立的不合適。
8、在網(wǎng)上看到很多大佬回答別人的實證問題,比如,調整后的可決系數(shù)應該是多大才合適。有些人會說至少30%,太小,自變量不能很好的解釋因變量,實際意義不大。也有人說,這種要求其實是國內學術界刻意追求合理化的擬合優(yōu)度的結果,很多國外的學術研究中,調整后的可決系數(shù)都非常低,但是模型還是照樣成立,并且研究結果還能得到認可。
我一度糾結于模型的擬合優(yōu)度和模型的F檢驗、T檢驗三者之間如何才能同時實現(xiàn)區(qū)間符合,使得模型的可信度更高。
一個事實。
這些所謂的合不合適,取決于最后閱卷的老師們。論文通過與否,其實與老師是分不開的。自己能夠做到的,是把基礎性的問題解決,有自己的看法,但又不脫離理論;困于理論,但是又可以利用理論。
寫畢業(yè)論文的過程可能會很痛苦,但是唯有解決,才能解脫。
不是每個人都是學霸,所以我寫下的這篇文章,都是基礎性的問題與解答,學霸學神君如果路過,請勿噴。
推薦閱讀:《畢業(yè)論文中的案例怎么寫》
《寫畢業(yè)論文如何找素材做筆記》
《個案護理論文怎么寫》